
Defend w
hat you create

BackDoor.Tdss.565
and its modifications
(aka TDL3)

BackDoor.Tdss.565 and its modifications (aka TDL3) | 2

Defend what you create

Installation

This piece of malware — a rootkit — presented surprises within minutes after the analy-
sis of its anatomy got underway. For instance, its non-typical method for injection into
a system process during installation was something completely unexpected. Though
documented, the method has never been implemented in any known virus before and
therefore it allows the rootkit to bypass most behaviour blockers, install its driver and yet
remain undetected.

Now the installation continues in the kernel mode. The rootkit searches through the
stack of devices responsible for interaction with the system disk to determine the driver
it is going to infect, its future victim. The choice depends on the hardware configura-
tion. If the system disk uses the IDE interface, it will pick out atapi.sys, in other cases
it can be iastor.sys. There are rootkits that infect file system and network drivers or
even the system kernel to ensure their automatic launch (BackDoor.Bulknet.415(Virus.
Win32.Protector.a/W32/Cutwail.a!rootkit), Win32.Ntldrbot (Virus.Win32.Rustock.a/
Backdoor:WinNT/Rustock.D), Trojan.Spambot.2436 (Trojan-Dropper.Win32.Agent.
bwg/TR/Drop.Agent.BWG.1) and others) and this instance is not an exception. Note
that the file size remains the same as the malicious code is written over a part of the
resources section. In fact, the piece of code only occupies 896 bytes (in latter versions
it is reduced to 481 byte) and it loads the main body of the rootkit. At the same time
it changes the entry point, sets the driver signature link to null and the file's hash sum is
recalculated. Addresses of API functions used by the loader for infection are located in its
body as RVAs.On one hand it makes the loader much smaller, on the other it complicates
analysis of the infected driver in the system that uses a different version of the kernel.

After that the malware assesses available disk space and utilizes its small part (24064
bytes) from the end of the disk for storage of the rootkit’s main body or more precisely
of that part of the driver which performs the installation saved as binary data instead of
an executable image. The block starts with the “TDL3” marker followed by 896 bytes
of the genuine resources code of the infected driver. It also creates a separate virtual
drive where its user mode components and configuration file are located. It looks like
this trick was inspired by BackDoor.Maxplus (Trojan-Dropper.Win32.Agent.auxo/
TROJ_FFSEARCH.A/FFSearcher/Trojan:Win32/Sirefef.A), that also created a virtual disk
to deploy its components in the system. Details of the process are described below.

The rootkit’s later versions (BackDoor.Tdss.1030 (Rootkit.Win32.TDSS.y)) store original
resources data and their body on the hidden encrypted drive in rsrc.dat and tdl files re-
spectively, which significantly simplifies its updating.

Upon completion of the installation, the driver returns a STATUS_SECRET_TOO_LONG
(0xC0000154) error that informs user mode components (http://vms.drweb.com/
search/?q=BackDoor.Tdss.565) that installation has completed successfully and makes
the system unload the driver that is no longer used by the rootkit.

 | 3BackDoor.Tdss.565 and its modifications (aka TDL3)

Defend what you create

The loader

The viral loader starts working along with the infected driver. As was already men-
tioned above, its main task is to load the rootkit’s body stored at the «end» of the hard
drive. Since the loader starts working when the hard drive port driver is loaded by the
kernel, it still can’t work with the disk or the file system. That’s why it first registers a
notification routine for creation of FS (FileSystem) control device objects, and only then
it loads the rootkit’s body. Early versions of the malware used the IoRegisterFsRegis-
trationChange function for this purpose, while the later ones resort to the temporary
interception of the victim’s IRP_MJ_DEVICE_CONTROL in DRIVER_OBJECT where
the dispatcher waits for a certain request from the file system. Remarkably, in both
cases the entry point of the infected driver is used both to start the original DriverEntry
as well as for the FS standby (Image 1).

To be consistent, let’s assume that atapi.sys is the compromised driver.

Now let’s take a closer look at how the BackDoor.Tdss.565 (Rootkit.Win32.TDSS.u/
Virus:Win32/Alureon.A) loader works. Once it has gained control, it will go over the
sections table of its media and modify it to make detection of the initialization section
more complicated: nulls the IMAGE_SCN_MEM_DISCARDABLE bit of each section,
replaces the first byte of a name with zero if it is INIT. It also reserves an auxiliary data
structure to write the pointer to the atapi driver object send to the DriverEntry by the
kernel. After that it registers using the CDO (Control Device Object) FS created notifi-
cation sent to the kernel.

Image 1.

The entry point of atapi.sys
compromised by
BackDoor.Tdss.565

 | 4BackDoor.Tdss.565 and its modifications (aka TDL3)

Defend what you create

As the file system request is received, the second part of the loader is started. It
checks all object-devices of the port driver (e.g., ”\Device\IdePort0”, “\Device\
IdeDeviceP0T0L0-3”) and uses the disk offset placed in its body during the installa-
tion to read the rootkit's body. Though the method where the ordinary ZwOpenFile,
ZwReadFile functions are used for this purpose seems not quite sophisticated since
the malware has to check devices one by one, it allows the loader to remain compact
and serves its purpose quite well. The TDL3 signature placed at the beginning of the
data segment is used to verify if the reading has been successful (Image 2). After that
the notification is deleted (IoUnregisterFsRegistrationChange) and control is trans-
ferred to the body of the rootkit.

Image 2.

The first sector of
the rookit’s body located in
end sectors of the hard drive

 | 5BackDoor.Tdss.565 and its modifications (aka TDL3)

Defend what you create

The rootkit

Surely, an encrypted drive with its own file system is among most notable technical
features of TDL3. The mechanism used to hide the entire file or a part of an arbitrary
disk sector on the port driver level is remarkable too. No other known rootkit has the
concepts implemented in full.

It is well known that the main feature of the NT virtual file system is availability of all
input-output devices on the descriptor layer where the key element is the file object
created by the kernel and objects that represent the device. An application opens the
descriptor for one channel, hard drive, volume or file and different layers of input-
output devices stack participate in the interaction. The kernel only needs information
about a request and starts a corresponding dispatcher function.

Authors of the rootkit used a similar approach and implemented their file system
working on the level of device object's port driver so that the virus mounts its FS to the
device object.

The atapi driver creates several types of device objects (Image 3). The upper two are
devices representing hard and CD drives while the other two are controllers interacting
with the mini-port driver implemented in Windows XP as a hybrid mix of a port and a
mini-port. To mount its hidden drive, the rootkit chooses a device object with the
FILE_DEVICE_CONTROLLER type.

An ordinary (“healthy”) atapi uses only one IRP dispatch function to serve read/write
requests – IRP_MJ_SCSI (IRP_MJ_INTERNAL_DEVICE_CONTROL). The client uses
Srb and sends it to the disk device object. SUCCESS is always returned for Create/
Сlose atapi requests since the atapi doesn’t use them. However, the Create operation
is very important for FSD (File System Driver) since it initializes FILE_OBJECT used for
file operations.

The path to rootkit files located in the protected (hidden) area looks as follows:

 \Device\Ide\IdePort1\mjqxtpex\, where mjqxtpex is a 8-byte signature generat-
ed randomly at system startup. The hidden drive is used by user mode components of
the rootkit to store their files received from the Internet or to read their configuration.

Full path example:

\\?\globalroot\Device\Ide\IdePort1\mjqxtpex\tdlcmd.dll

\\?\globalroot\Device\Ide\IdePort1\mjqxtpex\tdlwsp.dll

\\?\globalroot\Device\Ide\IdePort1\mjqxtpex\config.ini

Image 2.

Devices created by atapi.sys

 | 6BackDoor.Tdss.565 and its modifications (aka TDL3)

Defend what you create

In order to understand how the rootkit works with its file system, let’s take a look at
the flow-chart that shows how a create request is normally processed (ntfs or fast-
fat) and see how \Device\HarddiskVolume1\directory\config.ini is opened on an
ordinary drive and how – \Device\Ide\IdePort1\mjqxtpex\config.ini is accessed
on the hidden drive (Image 4).

The rootkit has one shared dispatch function for all requests from atapi, clients and
user mode components. Therefore it performs two important tasks:

•	 Hides data located in the protected area from atapi clients and provides clients with an
original file as they try to read data from the disk.

•	 As with FSD it handles create/close/query information request for files from the pro-
tected area sent by roootkit’s dll used by processes as well as from the rootkit itself that
may request to read a section of config.ini.

The rootkit replaces parameters in the dispatch functions pointer table as follows: it
finds the end of the first section of atapi.sys file in the memory and writes the follow-
ing template into the cave (the remaining free space in the section):

mov eax, ds:0FFDF0308h

jmp dword ptr [eax+0FCh]

In some cases the instructions can overwrite data in the adjacent section since there
is no any verification procedure. Therefore interceptions are still directed to atapi.sys
(Image 5). It deceives many anti-rootkits so the malware remains undetected.

Image 4.

Opening a file on an ordinary
disk drive and opening
a file on the hidden drive

 | 7BackDoor.Tdss.565 and its modifications (aka TDL3)

Defend what you create

The rootkit utilizes a large structure for storage of all configuration information
that may be required to perform its routines. The structure pointer is placed at
0xFFDF0308, i.e. a part of KUSER_SHARED_DATA is used. The request dispatcher
is found at the +00FCh offset (invoked in the example above – jmp dword ptr
[eax+0FCh]). Structures describing which sectors must be hidden and what should
replace them are also stored there.

If an atapi client requests data from the protected drive, it will simply zero-fill it or re-
place it with original data. Let’s take a look at the pseudo code showing how it works:

if(DeviceObject == ROOTKIT _ PARAM _ BLOCK. AtapiBoot-
RootkitDevObj &&

 IoStack->MajorFunction == IRP _ MJ _ SCSI &&

 IoStack->Parameters.Scsi.Srb->Function == SRB _ FUNC-
TION _ EXECUTE _ SCSI

)

{

if(RequestedStartSector + cSectors > ROOTKIT _ PARAM _
BLOCK.HideAreaStartSector)

{

 if(IsRead)

 {

 Replace the completion function of the
current stack location with its own function

 }

 else if(IsWrite)

 {

 End operation and return an error

}

else if(a request to the atapi or oep resource section,
chksum,

security data dir entry)

{

Replace the completion function of the current stack
element with its own
function

}

}

So it is the completion function where the data is replaced.

Image 5.

Windows XP SP3 atapi.sys
interceptions

 | 8BackDoor.Tdss.565 and its modifications (aka TDL3)

Defend what you create

Once the first versions of TDL3 were found in the wild, some developers of anti-rootkit
software made corresponding changes in to their products so that they would at least
detect the rootkit. Virus makers were quick to reply and created new versions of the
malware featuring new interception techniques which are harder to detect.

Now the dispatch table of the compromised driver remains clean. Authors of the
rootkit used a non-standard approach. They simply “stole” from the atapi the device
object working with the system drive they are going to use (Image 6).

The abnormality can only be detected with a debugger (Image 7) – an unknown de-
vice using an unknown driver. Moreover, the DRIVER_OBJECT header of the “un-
known driver” is corrupt while the driver is removed from the system drivers list (and
the “stolen device” too). The driver object is created by the rootkit to hide sectors of
the hard drive and provide access to the hidden sectors for the malware. It has already
become visible but you still need to find or guess a device with a name comprised of 8
random characters.

Now developers of anti-rootkits will have to devise a new way of how to use a speci-
fied device object to find a real driver used by the device. The debug output of the
rootkit upon its launch is also quite unusual. It reveals passion of the virus makers for
cartoons. For instance, it can display one of the following lines:

•	 Spider-Pig, Spider-Pig, does whatever a Spider-Pig does. Can he swing, from a web? No
he can't, he's a pig. Look out! He is a Spider-Pig!

•	 This is your life, and it's ending one minute at a time

•	 The things you own end up owning you

•	 You are not your fucking khakis

And in the later versions:

•	 Alright Brain, you don't like me, and I don't like you. But let’s just do this, and I can get
back to killing you with beer

•	 I'm normally not a praying man, but if you're up there, please save me Superman.

•	 Dude, meet me in Montana XX00, Jesus (H. Christ)

•	 Jebus where are you? Homer calls Jebus!

•	 TDL3 is not a new TDSS!

Image 6.

Clean system (on the left) and
infected system (on the right)
with the device “missing”

Image 7.

Detecting the abnormality
with WinDbg

 | 9BackDoor.Tdss.565 and its modifications (aka TDL3)

Defend what you create

The rootkit file system

At the end of the hard drive the rootkit occupies a certain area utilized to store
its body and the virtual drive. The structure of a physical drive in a compromised
system looks as follows:

Sector numbers of the virtual drive increase from the upper sectors to lower ones and
the rootkit uses the negative offset starting from the sector utilized as a descriptor of
the virtual directory (Image 9). So expanding backwards it can overwrite data in other
sectors of the physical drive.

File metadata and other information are placed in one file in the hidden disk drive. The
metadata size is 12 bytes and it has the following format:

+00 Signature [TDLD – a directory, TDLF – a file, TDLN – a file
from the Internet]

+04 an ordinal number of a sector with valid data

+08 data size, if the sector provides sufficient space for
storage or if zero is not set for the preceding field, the
offset from file data to the next sector where the file code
is stored (i.e. +0xC for metadata, so the field usually con-
tains 0x3F4, 0x3F4 + 0xC = 0x400)

Image 8.

Rootkit file system

 | 10BackDoor.Tdss.565 and its modifications (aka TDL3)

Defend what you create

On the Image 9, you can see three files written onto the disk during the rootkit installa-
tion (config.ini, tdlcmd.dll и tdlwsp.dll) and the bfn.tmp temporary file download-
ed from the Internet. All sectors locating the drive are encrypted using RC4. The same
encryption algorithm is used by other components that are not involved in operation of
the file system. The file described above is encrypted using the bot ID stored in config.
ini. After decryption it appears as a set of commands for the rootkit (Image 10).

.

On the Image 11, you can see a descriptor for the BackDoor.Tdss.1030 directory. Here
you can find new file metadata fields and data data for separate files of the rootkit
body (tdl) and original resources of the infected file (rsrc.dat):

The directory incorporates a metadata structure and subsequent file entries. The size of
each entry is 32 bytes (an entry on the Image 9 is highlighted).

Image 9.

BackDoor.Tdss.565 virtual
directory descriptor

Image 10.

Contents of bfn.tmp

Image 11.

BackDoor.Tdss.1030 virtual
directory descriptor

Image 12.

File descriptor

 | 11BackDoor.Tdss.565 and its modifications (aka TDL3)

Defend what you create

First 12 bytes of the file descriptor contain metadata with the TDLF or TDLN signa-
ture, the number of the next sector and size placed at the beginning. For instance, on
the Image 13 you can see that the specified file size is 0x10C bytes.

In the rootkit's file system, a sector containing data is followed by a “trash” sector
since the rootkit works with 0x400 bytes units (Image 13) instead of 0x200 (for
standard systems).

Image 13.

Reading sectors
of the virtual drive

Defend what you create

Conclusion

All in all, new BackDoor.Tdss rootkits are sophisticated pieces of malware. Their de-
tection and neutralization pose a serious challenge to anti-virus vendors. And as it has
already happened BackDoor.MaosBoot (Mebroot), Win32.Ntldrbot (Rustock.C)
and other rootkits not all vendors rise to it.

© Doctor Web, 2003–2009

3d street Yamskogo polya 2-12А
Moscow, Russia 125124

Phone: +7 (495) 789-45-87

Fax: +7 (495) 789-45-97

www.drweb.com | www.freedrweb.com | www.av-desk.com

